
Best Practices for Fluorescent Penetrant Inspection of Drum Rotors and Deep Well Spools Kevin D. Smith Pratt & Whitney Best Practices for Fluorescent Penetrant Inspection of Drum Rotors and Deep Well Spools

- Work in Progress
- Many contributors to date
- A. Broz, P. Swindell FAA
- L. Brasche ISU
- K. Griffiths RR UK
- B. Griffiths RR UK
- T. Dreher RR US
- T. Kessler Consult. (GE)
- J. Lively PW
- W. Rummel Consult.
- L. Clements Delta
- B. Stevens United

Motivation

- Drum Rotors are:
 - Critical Pieces of Rotating Hardware
 - **Typical** in modern compressor design
 - Challenging to inspect especially with FPIcompared to bolted rotors
 - Unique practices at engine shops

Benefits of Industry Best Practice

- Compliance Straight-forward (compromise solutions not necessary)
- Less variability across the industry
- Improved inspection sensitivity and reliability

Drum Rotor FPI Best Practice *Observations*

O/H Shop	Cleaning	FPI Process	FPI Fixturing	Viewing	Viewing Fixture
А	aqueous alkaline cleaner	Ultrahigh Sensitivity; Hydrophilic Emulsifier	Sling	Video System	Yes
В	aqueous alkaline cleaner	Ultrahigh Sensitivity; Hydrophilic Emulsifier	Sling	UV Scope	No - Sling
с	aqueous alkaline cleaner	Ultrahigh Sensitivity; Hydrophilic Emulsifier	Modified Sling	Video System	Yes
D	aqueous alkaline cleaner	Ultrahigh Sensitivity; Hydrophilic Emulsifier	Sling	Mirror and UV source	No -Sling
E	aqueous alkaline cleaner	Ultrahigh Sensitivity; Hydrophilic Emulsifier	Sling during emulsification. Fixture during penetrant application.	Mirror and flex UV light guide	Yes

Approach

- Augments existing shop processes
 - Consistency across stages
 - Addresses blind areas
- Performance-based vs. Equipment-based
- Assurance of complete viewing

2 Primary Sections to Best Practice

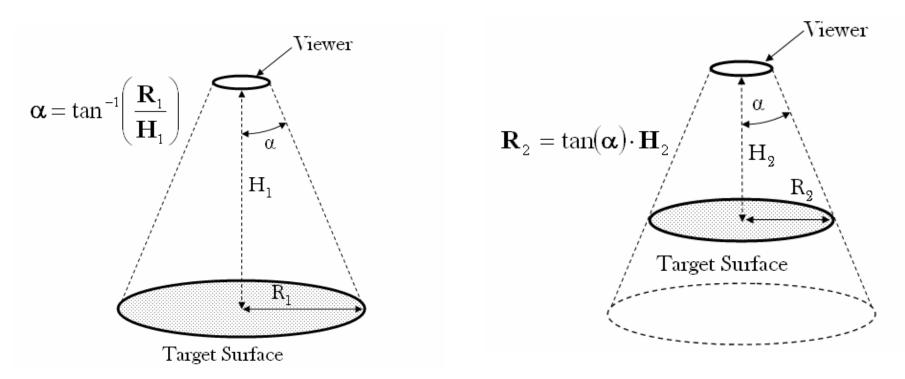
- FPI Processing
- Viewing System Requirements

- Ultrahigh Sensitivity Penetrant System

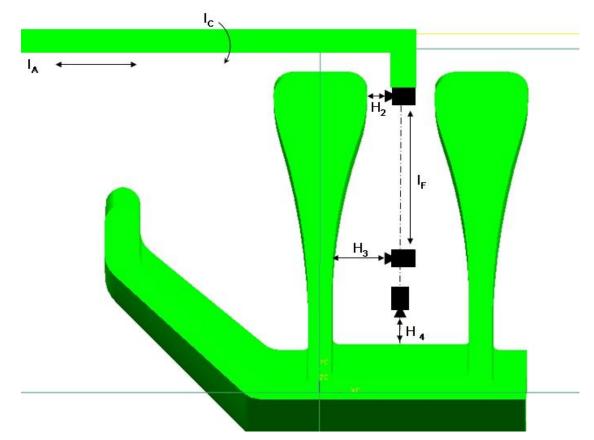
- Fixturing
 - Safe, Smooth Manipulation
 - Addresses areas obscured by fixturing

- Tighter control on emulsification time
 - 10% on shop specific emulsifier contact time
 - Stop bath recommended
 - Pumping or siphoning

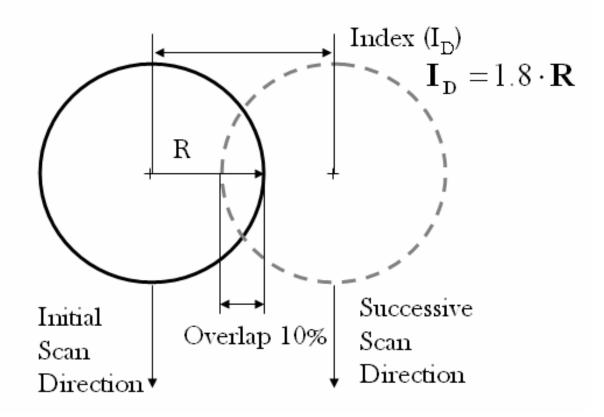
- Drying
- Developer
 - Manual Wand
 Required

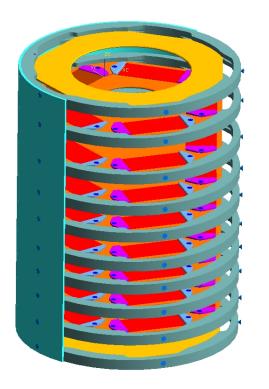

- Viewing System Requirements for
 - Resolution Fluorescing gage
 - UV intensity (max and min) To be amended in AMS 2647
 - White light contamination limits (AMS 2647)

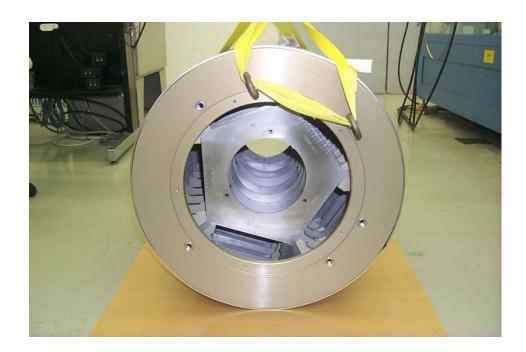
Part Holding Fixture for Viewing

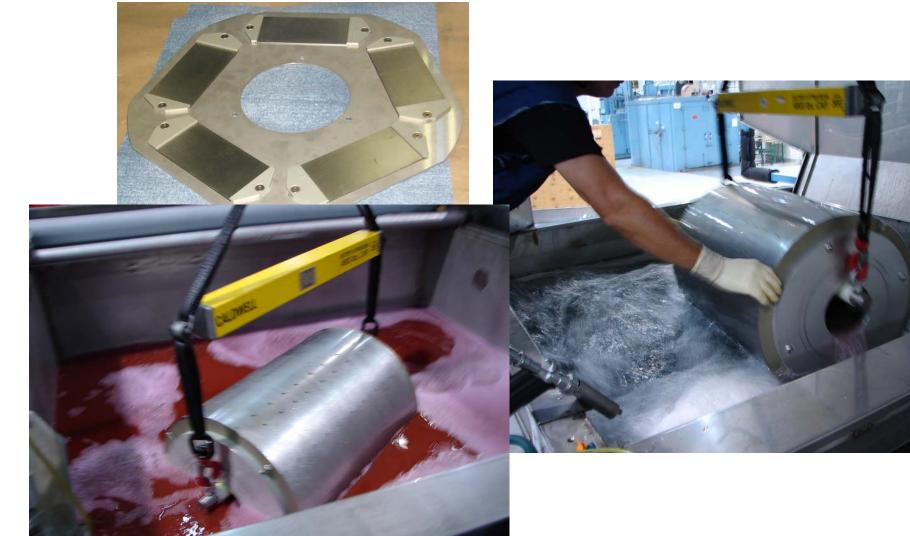


- User Establishes Key Usage Parameters
 - Stand off distance
 - Field of View
 - Index Size
 - Process to assure full viewing


• Field of View Determination


• Standoff Distance




• Index / Overlap

• Drum Rotor FPI Probability of Detection Fixture Design and Fabricated

Data Collection

- Processing performed on production FPI line
- Data collected in lab environment
 - Technicians accustomed to looking for small cracks typically produce 0.04" 0.05" 90/95 on this set
 - Production facilities typically produce ~0.060" 90/95 on this set
 - Data included in this presentation were generated in lab with technicians
 - Approximately 8 hours required to complete inspection in drum rotor inspection with borescope. Development time controlled to within limits of specification (developer applied with bulb as inspection progressed.)
- Variables Tested With POD Fixture
 - Emulsification Time (1 min when processed as web vs. 5 min when processed as drum)
 - Mirror vs. Viewing System

Drum Rotor FPI Best Practice Data Collection

- Definitions
 - Drum panels installed in "webs" and "webs" installed in drum rotor fixture
 - Borescope UV borescope used inside drum rotor fixture
 - Mirror UV light guide attached to shop mirror used in drum rotor fixture

- Results All values 90% POD / 95% CL
- Results are from laboratory environment in a controlled setting

Processing / Viewing*	Processing – Webs ¹	Processing – Drum ²
Viewing as Webs with no visual aids	X	0.050"
Viewing as Drum with Borescope	0.078"	0.091"
Viewing as Drum with Mirror	X	>0.150"

• Next Steps

– Address within SAE Committee K

- Finalize Best Practice
- Potential for separate document or attachment to AMS 2647

Conclusions

- Fixtures for FPI processing and viewing are a necessity for inspection of drum rotors
 - Control the process parameters and to assure coverage and overlap
- POD estimates were generated in a laboratory environment under controlled conditions and may not be representative of production POD values
 - Inspection of drum rotor took 8 hours using fixtured borescope
- Repeat of the POD study in overhaul environment would be beneficial in supporting fleet management objectives